
AO A.138 121 ANALYZING PROGRAM METHODOL00 ES USING SOFTWARE SCIENCE lI
U) OHI OSTATE UNIV RESEARCH FOUNDATION COLUMBUS
S H ZWEBEN JAN 84 ARO 1750.4-E DAAG2R 80 K 0061

UN ASS FE
/

KT

1 1 _. -i L 1 .

J&.2

WL I E2O

11111.2 116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

UNCLASSI FI ED
SECURITY CLASSIFICATION OF THIS PAGE W Dater 9

r REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
_____________________________________ BEFORE COMPLETING FORM

REPORT NUMBER 2.GOVT ACCESSION NO 3. RECIPIENT'S CATALOG NUMBER

17150.4-EL N/AN/A

TITLE (and Subtitle) S. TYPE Of REPORT A PERIOD COVERED
1 Aug 80-31 Dec 83

Analyzing Program Methodologies Using Software Final Report
Science 6. PERFORMING ORG. REPORT NUMBER

____ ___ ____ ___ ____ ___ ____ ___N/A

AUTHOR(&) 6. CONTRACT OR GRANT NUMBER(e)

S. H. Zweben DAAG29-30-K-0061

PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

Ohio State Univ AREA & WORK UNIT NUMBERS

Columbus, Ohio 432;2

I. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT OATE

U. S. Army Research Office
Jan 84

P. 0. Box 12211 I3. NUMBER OF PAGES

Resear~h Trinl]ra P~rde NEr 27"//o 1
4. MONITORING AGENCY NAME & %OORJSSt di nt Irom Controlling Office) IS. SECURITY CLASS. (of this report)

Unclassified
1S. DECL ASSI FI CATION/ DOWN GRADING

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abefract enlered in Block 20, It dlfferent Ima Report)

IL. SUPPLEMENTARY NOTES

yHE VIEW. OPINIONS. AND/OR FINDINGS CONTAINED IN THIS REPORT

ARE THOSE OF THE ALTrHORS) AND &HOULD OT BE CONSTRUED AS

AN OFFICIAL DEPARTMENT OF THE ARMY POSTIOIN. POLICY. OR DE-

CIliOA UILE[S A ESIGNATED BY OTHER DOOUMENTATION,@

IS. KEY WORDS (Cetim~e an reverse side It necosary and Identify by. block ,'aawb.)IL1

Computer Programs
(Computer Prograrmming l%

*ABSTRACT (ftne M revee SMN rNalseew mod Ie~it by Weoek member)

(-7 "The ultimate goal of the research program is to enhance the quality of
ILL computer software. In order to accomplish this goal, however, there have to
=6 be agreed upon notions of Just what quality means and how it can be assessed.

This project sought to make contributions to our understanding of these issues.
One of the specific objectives of this project was to study software science
metrics in the COBOL arena, another objective concerned the evaluation of
principles of software development.Research also sought to examine instruments

! L a ltern J,,ige to the camp rahensl Iq rre l; bu h rh all

DD t" W3 M ow 6OW PI 00V as is 119O)LETIt UNCLASSIFI ED
J"94 02 1 7 044 ieCUINY CLASSIVICATION OF THIS PAGE (MAN De. ISF9

SCURITY CLASIFICATION OF THIS PAGOIMhn Data gntenre)

T20. ABSTRACT CONTINUED

still rellable and valid means of measuring one's understanding of a piece
of software.

Accession For

NTIS GRA&I
DTIC TAB
Unannounced 0
Justificatio

By- - -
Distribution/ j

Availability Codes
Avail and/or

D i st Special

Unclassi ite
...... SlECURITY CLASIIFICATION OF THIS PAOIK.W. Dae!Enlle8___

!A 0

*RF Project 762340/713168
Final Report

ANALYZING PROGRAM METHODOLOGIES
USING SOFTWARE SCIENCE

Stuart H. Zweben
Department of Computer and INformation Science

For the Period
August 1, 1980 - December 31, 1983

U.S. ARMY RESEARCH OFFICE
P.O. Box 12211

Research Triangle Park, N.C. 27709

Contract No. DAAG29-80-K-0061

January, 1984

The Ohio State University
Research Foundation

1314 Kinnear Road
Columbus, Ohio 43212

Ai

2

Introduction

This is the final report of a research project which began in the summer oi

1930 and continued through the end of 1983. This report will sumnarize the

various objectives of the project, the approaches followed to accomplish these

objectives, and the major results obtained. Appended to this report is a list

of the participating personnel, and a list of the various scholarly activities

associated with the project which were performed by these personnel.

Objectives

The ultimate goal of the research program is to enhance the quality of

computer software. In order to accomplish this goal, however, there have to

be agreed upon notions of just what quality means and how it can be assessed.

This project sought to make contributions to our understanding of these

issues.

In the past decade, it has become increasingly popular to measure features of

the code itself, and to associate the resulting metrics with quality. One

technique, due to Halstead, et al., has come to be known as "software

science". The metrics of software science consist of functions of the

operators and operands used in the code. Several researchers have studied

these metrics, and many have found apparent relationships between the metrics

and such behavioral characteristics as effort to write the code. One of the

specific objectives of this project was to study the software science metrics

in the COBOL arena, as the earlier work had not really been concerned with

programs written in this language.

Another objective of this research concerned the evaluation of principles of

software development. In many software engineering articles and reports,

authors make statements concerning the DOs and DON'Ts for obtaining good

software. These state.ents, however, are often based on no scientifically

obtained evidence. Our research therefore was interested in seeing the extent

to which some oi these principles could be validated in a controlled

laboratory setting.

1v

3

The implementation of experiments to test hypotheses in software engineering

is often hampered by the difficulty in measuring aspects of quality such as

understandability. The standard means for assessing understandability, the

comprehension test, is very time-consuming to create. We therefore sought to

examine alternative instruments which are easier to create but which are still

reliable and valid means of measuring one's understanding of a piece of

software.

Approaciies

In trying to apply the area of software science to COBOL, we first of all

needed to create a software tool on which the various metrics of software

science could be conveniently obtained. The next step was to analyze COBOL

programs using the tool to see if the relationships from software science for

which evidence existed in other programming languages could be shown to apply

to COBOL. The goal here was to use a variety of programs, including those

written by students in computer science courses as well as those written for

production work by professional programmers. We were also aware of an effort

by researchers at Purdue University in which COBOL programs -were being

analyzed using the software science metrics. We therefore desired to compare

our results with those obtained by the Purdue group.

In deciding on our approach to evaluating principles of software development,

we noted that several researchers already had begun to deal with coding

principles. We therefore decided to focus our attention at the design phase

of the software lifecycle, where several principles also exist. This approach

also has the advantage of potentially allowing quality decisions to be reached

earlier in the development process, when corrective action is typically less

expensive.

Ve were interested in two types of investigations. One concerned the

evaluation of several possible quantitative metrics which could be obtained

from design documents, to see which appeared to provide the most information

about the quality of the resulting software. The second concerned the

evaluation of specific design principles, such as module coupling, in aI controlled experimental setting. That is, we sought to determine if software

IA

4

exhibiting features of good coupling (such as lack of global variable usage)
could be shown superior to similar software Wnose coupling was poorer.

In attackin- our final objective, that of improving the means of assessing
understandability, we noted that researchers in psychology have often used a

technique called the "cloze procedure" as an alternative to (multiple choice

or short answer) comprehension questions. The cloze procedure is one which

involves filling in missing blanks in a passage of text. The greater the

suojects" ability to fill in the missing pieces, the greater the understanding

of the material. Since cloze materials are very easy to construct, and have

received some credibility in other domains, we decided to investigate this

technique in the software domain.

Rlesults

A tool for obtaining the software science metrics from COBOL programs was

developed, tested, and enhanced during the project period. A technical report
describing the tool's design and use was published and provided to the sponsor

as part of a previous progress report. A large number of programs, from both
student programming courses and production environments, were analyzed. A

technical report detailing this investigation is in preparation, but the major

conclusions are as follows.

The Halstead length relationship held up reasonably well for all classes of

programs, but the components of the software that were included in the

operator and operand counts strongly influenced this result. For instance, in

smaller student programs, the length estimator was best when Data Division was
included in the counting strategy. For larger programs, including production

programs, counting or not counting Data Division didn't seem to make much
difference. Overall, then, it appears to be appropriate to include Data

Division in COBOL studies using software science metrics. In fact, this
suggests that declarative components of programs in other languages might have

strongly influenced earlier results in software science, and the data used in

these early studies might well deserve re-examination along these lines to see

whether the conculsions reached will change. If so, the reaction of the
entire computer science comunity to the software science metrics might well

-v" - i

5

ae different.

The language level estimator of software science could not be shown to be

constant in any of our studies. We recotmend that it is not useful as a

metric at this time, especially when applied to an individual prograu.

The Halstead effort metric seemed to work very well for small programs, but

was not very &ood for larger programs. We feel that the effort metric does

not appropriately capture the effort required to integrate program components.

Therefore, small programs which require little integration effort are

relatively unaffected by this weakness, while larger programs can be greatly

affected.

Other metrics, such as 1!cCabe's cyclomatic number, Kafura's information flow

metric, and Davis' chunk metric, were also studies in the "effort" domain.

"one of them provided consistently good results. We feel that there are to

date no really valid metrics of software effort. The technical report

discusses some approaches which may overcome the weaknesses of the metrics

studied in this research.

The metrics obtained by our COBOL analyzer were compared with those obtained

using a COBOL analyzer developed at Purdue University. The Purdue analyzer

was implemented on Ohio State's Amdahl computer and the programs analyzed by

the Ohio State COBOL analyzer were run on the Purdue analyzer. There were
significant differences obtained in many of the operator and operand counts,

due to differences in the counting strategies employed. The effects of these

differences on the validity of the Halstead metrics, however, was not

significant. That is, when one test program was compared to another using the

OSU analyzer, the results were similar to those obtained when the same pair of

programs were compared using the Purdue analyzer. It turned out that the same

conclusions could be reached concerning the length estimator and the language

level and effort estimators using either analyzer, for the set of programs

studied. However, the fact that the absolute values of the metrics changed

significantly cautions against reliably using the results obtained by

different analyzers in comparisons of programs. This makes it extremely

difficult to compare results obtained by different authors in the literature

on softt;are uetrics.

Our work in the evaluation of design methodology principles began with a study

of several designs written according to the methodology of Structured Design

espoused by Yourdon, et al, in a production environment. Several measurable

properties of these designs were recorded, and their relationship to errors in

development of the resulting system was analyzed. It turned out that the

design features most closely related to development errors were those which

had to do with the notion of coupling. The details of this study can be found

in Doug Troy's masters thesis.

Next, we performed several experiments to determine if the principles which

influence the level of coupling can be shown significant in a controlled

environmental setting. We selected the feature of global variable usage for

study because designs which differ along this single dimension are very far

apart in the coupling hierarchy of Structured Design. Furthermore, materials

for a controlled experiment which differed only along this dimension could

easily be developed. The experiments tested this coupling feature against

such attributes as understandability and modifiability. 'lowever, we could not

produce any main effects for coupling level in these experiments. These

results suggest that the effect of using global interface elements, rather

than paraceterized elements, is at best a second order influence on the

quality of the software despite the prominent role which it plays in the

coupling hierarchy of Structured Design.

Toward the end of the project period, we attempted to find other aspects of

the design of software which might play a more significant role in the

software's understandability. We tested two versions of a master file update

program, one of which was developed according to a top-down design philosophy,

and the other of which was developed using data abstraction design principles.

The two versions were shown to differ in their understandability. In

analyzing chese differences, it seems to us that the principle of module

conesion is playing an important role. Future research will attempt to

investigate this hypothesis more carefully.

Our investigations of the cloze procedure as a technique for assessing the

48

7

uncersrandability of software brought some interesting results. .n

en:perimenter using a cloze technique has a great deal of freedom. For

example, it is comon to delete every nth word from prose texts. The ch-oice

of n does not seem to m~ake much difference (as long as a Liinimun value of,

say, at least 3 is selected), and n--5 is common. ilowever, when applying the

cloze procedure to the software domain, different results were obtained wh~en

n=3 and n=5 were used. This has a great bearing on the validity of the cloze

procedure. 'Ie also noted that the kinds of "words" (things separated by

blanks or punctuation) that were deleted made a significant difference in tr.e

performance of the subjects. Tle attempted to classify the nature of these

deletions to explain these variations, and were fairly successful in this

regard. The classification also predicted the results of our later

experiments and those of another researcher who has studied the cloze

procedure in the software domain. The forthcoming dissertation by Bill Hall

will describe the details of these experiments and the classification scheme.

The work involving the cloze procedure has suggested several other kinds of

experiments which can (and probably should) be done to determine the

generality of our results. These include varying such factors as programming

language, subject experience and problem domain. However, by far the more

exciting outcome of this research has been its potential for more clearly

identifying the characteristics of software that make it difficult to

comprehend. As more is learned about classifying the "easy" and "hard" parts

to complete in cloze tests, more useful code metrics (at least) may well

result, and we may get closer to our objective of trying to quantify (and

thereby possibly improve) at least one important dimension of software

quality.

.. ..I

List of Personnel Who Uorked on This Project

Stuart I. Zweben Principal Investigator Aug. 1930 - Dec. 1933

Douglas A. Troy Graduate Student Aug. 1980 - :Uar. 1931
(not supported)

John 3. Lonse Graduate Research Assoc. Oct. 1930 - Dec. 1903

Kin Chee Fung Graduate Research Assoc. Jan. 1931 - Sep. 19i1

Eric Biefeld Graduate Research Assoc. Jul. 1931 - Aug. 1931

Narayan Debnath Graduate Research Assoc. Jul. 1982 - Jun. 1933

illiam E. Hall Graduate Research Assoc. Jul. 19'2 - Dec. 19'3

Julie jiller Secretary Sep. 1980 - Dec. 1982

Christine Poynter Secretary Apr. 1931 - Jun. 1981

Sheila 4Iaginn Secretary Oct. 1931 - :iar. 1982

Amy Corneliussen Secretary 1lar. 1932 - Jun. 1982

1m

; . I i- I I "

9

List of Scholarly Activities Associated with the Project

Publications

'"leasuring the Quality of Structured Designs", Journal of Syste:s and

Software, 2, 113-120 (1981); D.A. Troy and S.'d. Zweben, co-authors.

"Evaluation of Design Uiethodologies, A Proposal", ACU! SIG FT Software

Enzineerinz Notes, 7, 1, January, 1932, 60-69; U1. Arisaw, G. 3ergland,

E. Bowers, J. Buxton, R. Kelley, N. Kerth, S. Saib, P. Tin, Troy, and

S. Zweben, co-authors.

"Control Flow Complexity: Issues and Experience", Proceedinqzs of the SHiAE53

Conference, Ularch 1982; S. Zweben, author.

"A Software Science Analyzer for COBOL", Technical Report 83-2, Computer and

Information Science Research Center, Ohio State University, 1983; K.C. Fung,

11. Debnath, and S. Zweben, co-authors.

"Experimental Evaluation of Software Design Principles: An Investigation into

the Effect of 11odule Coupling on System i odifiability", Journal of Systems and

Software, to appear; J. Lohse and S. Zweben, co-authors.

"A Study of the Application of Software Iletrics to COBOL", Technical Report,

Computer and Information Science Research Center, Ohio State University, 1904;

in preparation; 1. Debnath and S. Zweben, co-authors.

jPresentations

"Software Science in Software Engineering", ACNI Niagara Frontier Chapter,

Buffalo, 1.ew York, 'larch 1981 and ACM Rochester Chapter, Rochester, llew York,

Uarch 1981; S. Zweben.

t

"rhe Status of Software Science in 1981", CO'aPSACUl, Chicago, Illinois,

November 1931; S. Zweben.

L

"SUo-fEware .Metrics 2Researcha: An Icademic Perspective", A"M Coa..puter Zeience

Coaference, Indianapolis, indiana, February 1902; S. Z;:.cLoen.

"Coatrol Flow CoLLylexity: Issues and ';xperierce", S .,',-5 C-'ference, Los

An~eles, California, Mlarch 1902; S. Zweben.

"Towar a A Measure of System Coupling", Fifth MIinnowibrook. 17orlshop on SoFtw;aca,

Blue Mountain Lai~e, Mew York, July 1932; J. Lolise and S. Z%.eben.

"Software 7Enineering: U-hat Can It Do For You? What Can You Do For It?"',

ASIS52 Annual Conference, Columbus, Ohio, October 190'2; S. Zweben.

"Sof tware M1etrics", Purdue University Computer Science Department' S 20 th

Anniversary Symposiuni, '.est Lafayette, IndianL, 1-ovember 1962; S. Zweuen.

"Software Quality and the Halstead M.etrics", ACIM Greater Daytorn Chapter,

Dayton, Ohio, irovenber 1932; S. Zueben.

"Principles of Software Engineering", Professional Development Semairar, The

Ohiio State University Office of Continuing Education, Columabus, Ohio, June

IM3; S. Zweben.

"The Cloze Procedure and Program Complexity", Sixth llinnovibrook Workshop on

Software, Blue M1ountain Lake, 11ew York, July 1983; W. Hall and S. Zweben.

Theses

"M. easuring the Quality of Structured Designs", 11asters Thesis, Department oi

Computer and Information Science, Ohio State University, M-arch 1981; ooug;las

A. Troy, author; S.H. Zweben, advisor.

"The Cloze Procedure and Program Complexity", Ph.D. Thesis, Department of

Computer and Information Science, Ohio State University, in preparation;
Zilai . :!all, author; S.11. Zweiben, advisor.

DAT,

F I L Mi

